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ABSTRACT 

Research in the field of detergent formulation is 
deeply involved in the optimizat ion of numerous 
detergent systems. The use of experimental  designs in 
looking for optimal formulations can save a large 
amount  of  laboratory time. This paper describes a 
coherent  strategy of  use for a special class of simplex 
designs adapted from Scheff¢'s work. The technique 
applies to  mul t icomponent  systems, as they are 
generally met in detergent formulation. Proper de- 
signs provide polynomial  equations and, in addition, 
convenient graphical representations that enable the 
chemist to predict  responses for a wide range of 
mixtures. Calculations are easy. A computer  may help 
for routine application of these designs, but is not  
strictly required. The method is illustrated by a 
problem in the solubilization of light duty liquid 
detergents and at the same time provides arguments 
for bet ter  use of statistics in formulation. Finally, this 
simplex method is posit ioned among some other 
statistical techniques dealing with mixture designs. 

INTRODUCTION 
It  is well established that  statistics, and experimental 

design in particular, may provide answers of demonstrated 
worth for many formulation problems. However several 
pitfalls may discourage potential  users, thus depriving 
them of a powerful tool. On the one hand, most of the 
existing statistical designs are general purpose techniques 
and cannot be applied directly to specific problems faced 
by the chemist. Other techniques require the assistance of a 
nonchemis t - a  computer  programer or a s ta t i s t ic ian- for  
choosing the proper  design and conducting subsequent data 
analysis. 

In this paper we describe a method that overcomes these 
difficulties. The technique is devised especially for a 
specific problem: the study of mul t icomponent  systems. 
Except for routine application of the method,  a computer  
is not  required; a chemist with a good knowledge in 
statistics can do without  a professional statistician, for the 
paper offers a complete and flexible strategy. 

The method applies to mult icomponent  systems; that  is, 
mixtures of several components,  the properties of which 
depend only on the relative percentages of the components  
and possibly on their  total  amount.  This is typical ly the 
case with detergents for definite usage conditions wherein 
one is interested in performance or physical characteristics. 
Proper designs lead to polynomial  equations and graphical 
representations which enable the chemist to easily predict 
responses for a wide range of different mixtures. Moreover 
requirements for several different responses may be com- 
bined. This is a useful application of the method in reaching 
pert inent  marketing targets. 

The method consists of a coherent strategy of use that 
we have built  for a special class of "s implex" designs 
originally by Scheff6 (1,2). After a presentation of simplex 
designs, we illustrate the method on a solubilizing problem 
in the field of  the light duty liquid detergents (LDLD). For  
a fixed active ingredients system, we search for the solubi- 
lizers mixtures that lead to preassigned values of viscosity 
and cold weather clarity (clear point) .  I t  is unnecessary to 
insist on the interest of  these two properties in the case of 

clear liquids that are sold in transparent packs. 

SIMPLEX DESIGNS 
Response Surface Designs 

The use of experimental  design in formulation work may 
arise for two different types of experimental  objectives: to 
find combinations of components  that  optimize the prop- 
erty under study, or to obtain an empirical equation for 
that  property in a domain of interest.  The second objective, 
which includes the first, needs more elaborate designs, e.g., 
the response surface designs. The equation is generally a 
low order polynomial  and consists of  only a few terms; 
very often adding more terms improves the fit of the model. 

Example: Y =  a 1 x I + a  2 x 2 + a  3 x 3 + a  4 x 1 x 2 + a  5 x 1 
x 3 + a 6 x 2 x 3 + e, where the aia's are the coefficients, the 
xi 's  the components  proport ions and e an infinitesimal 
Gaussian variate. Taking out  e, one gets ~ which is an 
estimator of the response Y, and the corresponding 
equation represents the response surface of the phenom- 
enon. With three variables, response surfaces have no 
graphical representation in general, but  for a particular case, 
the simplex design, visualization is possible. I t  concerns the 
domain of ( x l ,  x2, x3)  mixtures such that the total content  
x I + x 2 + x 3 is fixed. In fact there exists a way of 
overriding this constraint,  which will be used in this paper. 

The usual mathematical  definition of the simplex is: 

l ~l  + X 2  + X 3  = 1 

Xl ~O, x2 ~ 0 ,  X 3 ~  0 

The representation is shown in Figure 1. 
The effect of the constraint is to reduce the parameter  

space dimensionality from three to two; then all (x l ,  x 2, 
x3) mixtures lie inside a triangle. 

With four components  we get a tetrahedron, and 
graphical representation remains possible for faces and cuts 
of the tetrahedron. 

Scheff6 Designs 
Several statisticians have provided simplex designs, but  

those by Scheff6 (1,2) and Gorman and Hinman (3) are 
particularly relevant here. The Scheff¢ method consists in 
exploring the components  space at points corresponding to 
an ordered arrangement known as a lattice. Two families of 
designs are available. First,  Scheff6 developed the simplex 
lattice design (1), which is determined by two figures: q for 
the number of components ,  and m for the degree of the 
polynomial  response. Design points consist of pure compo- 
nents and mixtures of two or more components  (up to m). 
For  each mixture the proport ions of the components  are 
simple fractional numbers,  design points symmetrically 
covering the simplex. When there is only one measurement 
per point (one replication),  the sample size is given by the 
formula: n = (m + q - 1) ! / m! (q - 1) ! Examples of 
representations of several (q, m) simplex-lattice designs are 
given in Figure 2. 

Five years later, Scheff6 published a new paper intro- 
ducing the simplex-centroid. Contrary to the lattice design, 
in which there is no mixture with more than m compo- 
nents, centroid designs are such that for any number of 
components  between 1 and q there exist one or several 
design points corresponding to these mixtures. In particular 
there is one point  with all components  present in equal 
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FIG. 1. Simplex representation. 

x; 

proportions. The sample size for one replication is (2q - 1). 
Examples of representation can be seen in Figure 3. 

We would say that the simplex centroid is relevant for 
mixtures of many components when response is simple 
(low order). The simplex lattice would apply to higher 
order variations but  with not  too many components,  
because estimation of regression coefficients becomes tedi- 
ous when q is large. 

Both families provide polynomial equations, the coeffi- 
cients of which are simple functions of the measured 
responses at the experimental points. 

EXPERIMENTAL AND STATISTICAL PROCEDURES 

Starting Materials 
Experiments were run on two different active ingredi- 

ents systems denoted by A and B, respectively. The A 
system has been used to test the strategy of handling the 
designs. The B system was devoted to the illustration of  a 
restricted design. 

In both cases the solubilizing system consisted of three 
classical solubilizers: ethyl alcohol, urea and sodium xylene 
sulfonate (SXS). Obvaously viscosity and clear point depend 
not only on the relative proportions but also on the total 
amount of these solubilizers. Therefore we introduced part 
of the water content  as a pseudocomponent,  the only 
purpose of which is to allow the total amount of the three 
solubihzers to vary. Let us denote x 1, x 2, x 3 and x 4 as the 
respective proportions of: the pseudocomponent  part of 
water, alcohol, urea and SXS. Only x I + x 2 + x  3 + x  4 was 
fixed, say at p per cent, p being determined after some 
initial trials. Thus the pure water point corresponds to x 2 + 
x 3 + x 4 = 0, x 1 = p, but in the total formula water content 
is of  course greater. The no-water face corresponds to x I = 
Oand again, of  course, there remains water in the formula; 
on this face x 2 + x3. + x 4 = p reaches its maximum. 
Between these two limiting cases x 2 + x 3 + x 4 takes 
intermediate values. 

Besides water, alcohol content  is split into two parts 
with one part fixed, while the other part (x 2) varies 
between 0 and p. The fixed part equals the quantity of 
alcohol necessary to obtain a "clear product"  at the pure 
water point. It  is therefore the minimum alcohol content  
over all the design points. There is no objection to doing so, 
since for usual formulas the alcohol content  is generally 
higher than the content  of  the other solubilizers. 

3 £X)MI~NENTS 

Q u a d r a t i c  C u b i c  Q u a r t i c  

n = 6 n ~ i0 n = 15 

/~ EONPONI~ITS 

Q u a d r a t i c  C u b i c  Q u a r t  1 c 

n ~ 1 0  n - 213 n = 3 5  

FIG. 2. Simplex lattice designs. 

Methods of Measurement 

All  formulas were tested 24 hr after their formulation. 
Viscosity: All measurements were made with a Brook- 

field viscometer model LVF, at 30 rpm, spindle n ° 1 or 2. 
Each sample was kept at 22 C for ca. 6 hr and then warmed 
to 25.5 C. At that moment  the viscometer-spindle was put 
in the solution, the measurement being done when the 
sample is again at 25 C. 

Clear point: The method was aimed at determining the 
temperature such that the solution became clear again after 
a previous freezing. About 15 ml of solution were poured 
into a glass test tube and left at -18 C for 12 hr. Then the 
test tube was left at room temperature and a thermometer  
was introduced in the frozen solution. While the tempera- 
ture was going up, the thermometer  was turned slowly 
inside the test tube for homogenization purposes. The 
temperature at which the solution became perfectly clear 
was taken as the clear point. For samples with a clear point 
under 7 C, a slight alteration was adopted to keep the 
experimental error level. In the latter cases clear point 
would be reached too fast with the above procedure. 
Therefore, after the frozen stage, the test tube was placed 
in an ice water bath instead of  being left at room 
temperature. 

Experimental error: The estimated error is the sum of 
two components:  the bias error and the experimental error. 
The first one is bound to the lack of fit of the polynomial 
model and is studied further. The second one is familiar to 
all experimenters: it depends on the kind of  variable 
measured, on the operator and on the chosen procedure. 
For both viscosity and clear point the assumption of a 
constant experimental error was valid here: ~/+ 20 cps for 
viscosity and 0 + 1.5 C for clear point. 

Response Surface Coefficients 
References 1-3 provide the exact forms of the response 

surfaces together with the linear equations that give 
polynomial coefficients as functions of the responses at the 
design points. In these papers this information is supplied 
for simplex centroid and simplex lattice designs for systems 
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FIG. 3. Simplex centroid designs. 

of three and four components. For details we therefore 
refer readers to References 1-3. The following example 
shows the simplicity of the equations. Let us contemplate 
the cubic simplex lattice design with three components.  
There are 10 design points, and 10 coefficients are to be 
estimated. Let Yi  denote the responses, with i as indicated 
on Figure 4. 

The respbnse surface is: 

Y=/31 Xl +/32 x2 +/33 x3 +/312 Xl x2 +/313 Xl x3 +/323 

X2 X3 +~12 Xl  X2 (Xl -- X2)  +")'13 Xl  X3 (Xl - - X 3 )  

+3'23 x2 xs (x2 - x3) +/3123 xl x2 x3. 

/3i's and 3'i's respectively are determined as follows: 

[31 = YI 
[32 = Y2 
~3 = Y3 

/312 --- (9/4) (Y4 + YS - YI - Y2) 
/31 3 = ( 9 / 4 )  ( Y a  + Y 9  - Y 2  - Y3) 
/323 = (9/4) (Y6 + Y7 -- Y2 -- Y3) 

3'12 = (9/4) (3Y 4 - 3Y s - YI + Y2) 
3'13 = (9/4) (3Y 9 - 3Y 8 - Yl + Ya) 

3'23 = (9/4) (3Y 6 - 3Y 7 - Y2 + Y3) 
/312a = 27Ylo - (27/4) (Y4 + Y5 + Y6 + Y7 + Y8 + Y9) 

+ 9/2 (Yt + Y2 + Y3). 

¥1 

Y6 Y7 
FIG. 4. Cubic simplex lattice design with three components. 

Y3 

models, thus permitting economy in experimentation. 
The number of check points necessary depends on the 

degree of the response polynomial and will be accounted 
for later. One must perform the Behrens test for each check 
point and report the individual results, fit or no fit, on the 
graphical representation of the design. 

Then by looking at the graph one gets an overall 
mapping of the adequacy of the tested model. We strongly 
recommend this way of proceeding, as opposed to using 
global tests such as the Fisher one, for the sake of 
visualization together with a more detailed information on 
the lack of fit. 

We now describe the test procedure to use for each 
check point. Suppose we run r different measurements at 
the check mixture, Y denoting the average measured 
response. Let ~ denote the predicted response at that 
point,  as given by the model under test. What follows relies 
on two basic assumptions: first, at each of the n design 
points, all observations have been equally replicated, say k 
times. Scheff6's theory may apply to a more general case 
where observations can be replicated differently, according 
to the position of the mixture, vertex, mid point,  centroid 
etc. However, for the operator's convenience and simplicity 
in calculation, we recommend equal replication. The second 
basic assumption concerns the experimental arror, denoted 
by o z. We assume that a is homogenous enough to be 
considered constant over the domain of the study. For 
viscosity and clear point, as said before, this assumption is 
realistic; when it is not,  refer to References 1-3. The test 
procedure consists in comparing the characteristic t~ o ,g, tJ 
with the critical value given in Behrens tables (4) whic~ are 
read for suitable entries f, g and 0. t is expressed by: 

tr, g,0 : l P- ~ I /or /1/r  + ~/k 

Test of Fit  

The response surface being obtained, the next step is to 
check its adequacy to the true responses. This is done with 
tests of fit, which deliver proper measures comparing the 
bias error to the experimental error. Throughout the paper 
we rely on a test, originally by Behrens (4). 

By construction of this type of design, there is a perfect 
fit of the model at all design points. Consequently check 
points are to be different from these points. Some of them 
will correspond to mixtures of a particular interest, whereas 
others will consist of design points of different simplex 

where [ and g are the numbers o f  degrees of freedom, 
respectively, associated with Y and Y: f = r - 1 ; g = n k  - 1 ; 
and 0: tan 0 = ~ - ( r / k ) .  

is an important  parameter which is a symmetric 
function in the x i ' s  and only depends on the position of the 
check point. Contour plots for ~ are given in Reference 3. 
We use the Behrens test rather than the usual student test 
for paired comparisons, because the errors on )7 and Y arise 
from different sources. Only Behrens test properly accounts 
for this situation, by introducing an additional parameter, 
tan O, which is the ratio of two variances: 
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TABLEI 

Num~rofDe~gnPomts 

q Quadratic Centroid Cubic Quartic 

3 ~ 7 10 15 

4 10 15 20 35 

5 15 31 35 

, ~. ~:= 
tan 0 ---¢/vat. Y/vat Y-with: var ~ (o2/k) 

var ~ =  o21r 

When f = g  and 0 = 45 °, Behrens and Student procedures are 
identical. With f = g but  0 :/: 45 °, the Student test would be 
too severe. With f<g,  as is the case in our illustration about 
LDLD solubilization, the Student test would be too severe 
for 0<45 ° and not  severe enough for 0>45 °. 

PossibiliW of Handling Restricted Designs 

After Behrens test has been performed on all check 
points we have a good idea of the fit of the model. A 
frequent cause of misfit is the presence of one or several 
extreme values, very different from the response at neigh- 
boring points, on the boundaries of the domain. In this case 
handling the design remains possible, with appropriate 
changes in coordinates. These changes act as if the domain 
were restricted, as drawn in Figure 5. The shaded areas 
represent the reduced domains, which are simplexes in x'i. 

Numerical support will be given only for case A from 
Figure 5. when dealing with experimental results. 

We generalized a technique, first recommended by 
Scheff6 but  for different purposes, which we called the 
pseudovertex method. We present with some details case A, 
the simplest one, and more briefly cases B and C. 

If  the extreme value corresponds to the third compo- 
nent,  x a = 1, we search for a point,  with proportion h of 
this component,  such that the response becomes reason- 
able, by gradually reducing x 3. Several trials may be 
necessary to find the most appropriate proportion h. 

Coordinates of the pseudo-vertex are: 

t; 1 = x2 = (1 - h)/2, x 3 = h 
<xa ~<h < 1 

This leads to the following change in coordinates: 

(i) 

(n) 

"~1 = x'1 + [(1- h) x'3121 

x 3 = hxt3 

iX'l=Xl. ~1 -h )  x312h 1 
~x~2=x2 - [(1 - h) x 312h ] 

~/3=x3[h 

O n e  can check that x ' l  + x'2 + x'3 = Xl + x2  + x 3 .  
Consequently the reduced design is still a simplex, but in 
(X'l,  x'2, x'3). 

System I is first used, in order to determine the true 
mixtures to be run for the new design. 

System II is used for testing the lack of fit and for 
prediction of responses at mixtures of interest. 

Case B, in Figure 5, can be solved with two successive 
changes in coordinates the resultant of which is: 

X L X 1 

X 2 h X 3 X 2 h X 3 

X 1 

X 2 h X 3 

FIG. 5. Restricted designs. A: one extreme vertex; B: two 
extreme vertices; C: one extreme edge. 

i:i : (~l/k)- [(1- h) x3/2.k] 

3 = (x3/h)" [O-/Oxl/2k] ~ tO-k) O-h)xal4hk] 

The above system still can easily be worked out through 
hand calculations. 

Finally, for case C, we have: 

l 
Xtpl = Xl[h 

x,2 = :'2- [O-h) (~1 ÷ ~3) Ih] 
x 3 = x 3 / h  

The latter system is about as simple as for case A, but it 
may be handled in a different way. As it appears on Figure 
5C the restricted simplex is an equilateral triangle. With a 
suitable h we may avoid the change in coordinates. For 
example let us consider a quartic design; if h = 0.75, the 

~espon~e 

t i i I 

2 3 /~ 5 6 7 x 

FIG. 6. Effect of an extreme point on the polynomial degree. 
o--x = Experimental; x--.--x = cubic; o---o = quartic. 
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TABLE II 

Cubic Simplex Lattice, Four Components 

Design points Viscosity 

Clear point 

First measurement Second measurement Average 

6% Water 362.5 35 38 36.5 
6% Alcohol "/8 11.3 11.6 11.5 
6% SXS 365 12 12.6 12.3 
6% Urea 1630 23.5 23.8 23.7 
2% Water + 4% alcohol 129 7.2 7.4 7.3 
2% Water + 4% SXS 332 11.8 12 11.9 
2% Water + 4% urea 497 8.2 9.6 8.9 
2% Alcohol + 4% SXS 166 14.3 14 14.2 
2% Alcohol + 4% urea 232 8 9.2 8.6 
2% SXS + 4% urea 427 11.5 10 10.8 
4% Water + 2% alcohol 199 7.8 8.2 8 
4%Water + 2% SXS 341 7.2 6.8 7 
4% Water + 2% urea 431 4 6.5 5.3 
4% Alcohol + 2% SXS 98 12.8 12.6 12.7 
4% Alcohol + 2% urea 119 8 8.5 8.3 
4% SXS + 2% urea 358 14 13.2 13.6 
2% Water + 2% alcohol + 2% SXS 200 10.8 11.8 11.3 
2% Water + 2% alcohol + 2% urea 265 5 5 5 
2% Water + 2% SXS + 2% urea 492.5 8.7 8.4 8.6 
2% Alcohol + 2% SXS + 2% urea 235 10 9.9 10 

remaining  design po in t s  c o r r e s p o n d  to  the  cubic mode l  for  
the res t r ic ted  design. 

Besides, i t  may h appen  tha t  the doma in  of  in te res t  is 
very d i f fe rent  f rom an equi lateral  triangle. But very o f t en  
this doma in  can be split  in to  several adjacent  equilateral  
triangles. In part icular ,  an isosceles t rapez ium such tha t  one 
base line is twice the o the r  can be split in to  three  
equilateral  triangles. Actual ly this  case arises when  we 
canno t  fo rmula te  the u p p e r  hal f  o f  a Scheff6 's  s implex,  
since the o the r  hal f  is an isosceles t rapez ium.  This is a 
general izat ion of  some ideas con ta ined  in Reference  17. 

Sequential Search for Proper Simplex Designs 
Depend ing  on the  types  o f  appl icat ions ,  the  n u m b e r  of  

c o m p o n e n t s  can vary f rom three  to  abou t  ten .  When this 
n u m b e r  b e c o m e s  large, above five for  ins tance ,  only  
quadra t ic  fit  is reasonable .  This is the case in the  pe t ro l eum 
indus t ry ,  where  p rob lems  such as oc tane-b lend ing  vs. 

pe r fo rmance  character is t ics  are encoun te red .  In de te rgen t  
fo rmula t ion  chemis t s  rarely work  on more  than  five 
c o m p o n e n t s .  Accordingly  we deal only  wi th  sys tems  
c o m p o s e d  of  three  to  five materials ,  and we suggest a 
m a x i m u m  of  the  f o u r t h  degree for  the  app rox ima t ing  
polynomia ls .  Beyond  this  we believe reduc ing  the domain  is 
be t t e r  than a t t e m p t i n g  quin t ic  equat ions .  Table I gives n ,  
the n u m b e r  of  design poin ts ,  for  designs relevant  to  these 
condi t ions .  

In Table I two cells are crossed,  because we do no t  
r e c o m m e n d  using the co r r e spond ing  designs: in one case 
the n u m b e r  of  expe r imen t s  is p robab ly  prohibi t ive;  in the 
o ther ,  the  crossed design is ident ical  to  the nex t  one,  wi th  
the excep t ion  of  one po in t .  I t  should  n o t  be t h o u gh t  tha t  
increasing the degree is necessari ly an i m p r o v e m e n t .  In 
part icular ,  the re  is a lot  o f  hes i ta t ion  b e t w e e n  cubic and 
quart ic  models ,  and we wish to  i l lustrate this d i f f icul ty  wi th  
the example  in Figure 6. 

TABLE III 

Quartic Simplex Lattice, Three Components a 

Clear po in t  

First Second 
Design points Viscosity measurement measurement Average 

6% Water 362.5 35 38 36.5 
6% Alcohol 78 11.3 11.6 11.5 
6% Urea 1630 23.5 23.8 23.7 

3% Water + 3% alcohol 165 12.8 13 12.9 
3% Water + 3% urea 537.5 6 5.8 5.9 
3% Alcohol + 3% urea 202.5 5 5.4 5.2 

1.5% Water + 4.5% alcohol 96.5 11 11.8 11.4 
1.5% Water + 4.5% urea 560 16.4 15.2 15.8 
1.5% Alcohol + 4.5% urea 310 7.6 8 7.8 

4.5% Water + 1.5% alcohol 230 14.8 13.4 14.1 
4.5% Water + 1.5% urea 455 3.6 3.3 3.5 
4.5% Alcohol + 1.5% urea 108.5 7.6 9.4 8.5 

3% Water + 1.5% alcohol + 1.5% urea 257.5 7.6 7 7.3 
3% Alcohol + 1.5% water + 1.5% urea 167 8.4 9.4 8.9 
3% Urea + 1.5% water + 1.5% alcohol 275 3.3 3 3.2 

apolynomial responses :  Where Xl, x2, x3, r e spec t iv e ly ,  represent  w a t e r ,  alcohol and urea. Viscosity: rl = 
362"5Xl +78x2+  1630x3"221XlX2"2 1835XlX3"2606x2x3"46"666x1 2x (Xl-X2) + 2820Xl 3x (x l - x 3 ) +  3064x 2 
x3(xTx3) - 332XlX2(X 1- x 2) -3086.66XlX3(X 1- x3)2 - 3330.666x2x3(x 2- x3)2- 4949.333x12x2x3 - 2366.667x 1 

x2x3 + 13438 667~lX2X32 Cle om + • . ar p " t: 0 = 36.5x I + 11.5x 2 23.7x 3- 44.4XlX 2- 96.SXlx 3- 49.6x2x 3- 52.3x 1 
x2(x l-x 2) -99.2733X lX3(X l-X 3) +36.266x2x3(x2-x3) -62.4x I x2(x l-x2)2 -49.066X lX 3(X1-X3) 2 -3.2x2x 3(x2-x 3) 
2 +555.733x 1 x2x3 +174.933XlX22X3.438.933XlX2X32. 
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TABLE IV 

Tests of  Fit  for Quartic Model 

A. Behrens Test  for Viscosity 

Check Computed  
poin t  values Observed values kl~ ~ tf, g, 0 

a 207 199 8 0.67 1.1 
b 119 I29  10 0.67 1.3 
c 161 119 42 0.67 5.7 ** 
d 225 232 7 0.67 0.9 
e 515 497 18 0.67 2.4 
f 510 431 79 0.67 10.6 ** 
g 248 245 3 0.50 0.45 
h 133.6 130 3.6 1.3 0.37 
i 223 219 4 1 0.46 
j 339.4 327 12.4 1.05 1.38 
k 236.2 235 1.2 1.05 0.13 

B. Student  Test for Clear Point 

Average 
Check Computed  of the two 
point  values observed values k/I ~ t 

a 12.9 8 4.9 0.67 7.1 ** 
b 12.3 7.3 S 0.67 7.3 ** 
c 7.2 8.3 0.9 0.67 1.3 
d 5 8.6 3.6 0.67 5.2 ** 
e 12.7 8.9 4.8 0.67 7.0 ** 
f 2.1 5.3 3.2 0.67 4.6 ** 
g 6.3 5 1.3 0.50 2.0 
h 8 7.5 0.5 1.3 0.6 
i 2.8 3.4 0.6 1 0.8 
j 5.2 5.2 0 1.05 0 
k 2.8 3.4 0,6 1.05 0.8 

TABLE V 

Quartic Model on Restr icted Design, Three Components  

Clear point  

Viscosity,  First  Second 
Simplex points  cps measurement  measurement  Average 

6% Water 410 8.1 7 7.6 
6% Alcohol  82 10.8 11.6 11.2 
6% Urea 7600 39 38 38.5 
3% Water + 3% alcohol 176.5 6.7 7 6.9 
3% Water + 3%urea 480 2 2.8 2.4 
3% Alcohol  + 3% urea 197.5 6.8 6.8 6.8 
1.5%Water  + 4.5% alcohol 116 8.8 8.8 8.8 
1.5% Water + 4.5% urea 560 3 3 3 
1.5% Alcohol  + 4.5% urea 332.5 4.8 5 4.9 
4.5% Water + 1.5% alcohol 265 3.6 4.2 3.9 
4.5% Water + 1.5% urea 445 2.4 2 2.2 
4.5% Alcohol  + 1.5% urea 127 8.2 9 8.6 
3% Water + 1.5% alcohol  + 1.5% urea 285 4.6 4.8 4.7 
3% Alcohol  + 1.5% water  + 1.5% urea 186 6.9 6.6 6.8 
3% Urea + 1.5% water  + 1.5% alcohol 325 4.8 4.9 4.9 

Transformed Design 

TABLE VI 

Points for the Restr icted Simplex 

Design 
points  a b c 

Viscosity 
values, cps 410 265 176.5 

d e f g h i j k 1 m n o 

116 82 115 183 295 1440 465 440 430 273 176 287 

TABLE VII 

Check Points for the Restr icted Simplex 

True proport ions  

Xl x 2  x 3  Design 
points  Water A l c o h o l  Urea 

p 1:10 13:20 1:4 
q 3:20 1:4 3:5 
r 3:4 3:20 1:10 
s 1:2 7 :20  3:20 

Pseudoproport ions  Viscosity values 

x~ x~ x~ Transformed 
Water Alcohol  Urea Exper imenta l  Usual quartic quartic .. 

.072 .621 .305 154 t 46  158.9 

.084 .184 .732 297.5 104 320 

.739 .139 .122 310 35.4 290.4 

.484 .334 .183 230 -4.1 210.3 
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FIG. 7. Fit of the quartic model for clear point. 

The X-axis represents design points on the edge of a 
ternary diagram. Points 1 and 7 corresponding to vertices 
are common to cubic and quartic models, points 3 and 5 
belong to the cubic and 2, 4 and 6 to the quartic. An 
experimental curve was drawn by assuming the simplest 
variation between two consecutive points; cubic and quartic 
responses were also drawn. 

This example leads to several remarks: cubic and quartic 
deviations from the experimental curve are of opposite sign; 
the quartic model is closer to the experimental situation 
than the cubic one; the distance between cubic and quartic 
curves is enlarged by the presence of point 7, which has an 
extreme value; and by taking off point  7 (restricted 
simplex) a quadratic model would fit best. 

In practice the experimenter, facing a lack of fit 
situation with the cubic model, would have tried the 
quartic one with only a very small benefit. As a last remark 
about these two models, a cubic design should be tried 
when a minimum and a maximum are expected, whereas a 
quartic design should be run for three extrema. We are now 
in a position to list the steps required for the sequential 
search of proper simplex designs: (a) The first step consists 
in defining the domain to be considered. The limits of the 
domain are subject to three constraints: formulation 
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FIG. 8. Viscosity, cubic modeL 

I ~  1630 
Urea 



OCTOBER, 1972 NARCY AND RENAUD: SIMPLEX EXPERIMENTAL DESIGNS 605 

6% 
Water 
A 36.5 

.4%water  ~ 8 
2% alcohol 

'~,'I . . . .  ' I ' V "  
• Q I " ~ • " ~ 2  ' 

~4% water 
).3 /2% urea 

2% water 
4% alcohol|  

.- - - ) ~  - 

-. \ .-, 

It- 

Alcohol 8.3 8_6 
4% alcohol 2% alcohol 

FIG. 9. Clear point, cubic mode]. 

feasibiiity, mixtures of interest from an economic point  of 
view, and responses in the ranges of interest. A few pilot 
experiments are necessary. (b) A second step is to measure 
the responses at the vertices: the pseudovertex feature is 
used in case of extreme values. (c) A third step is to run a 
simple model,  that  is the quadratic latt ice or the centroid. 
Measurements at the design points are replicated to reach a 
low variance for polynomial  coefficients and we establish 
the polynomial  equation of  the model.  Check points are 
chosen, lying inside the domain, such as the inner points  of 
the quartic model. If  fi t  is correct,  graphical representations 
are drawn for systems of  three components .  Optimal areas 
are isolated. If  we have to consider several responses, an 
"op t imum op t imorum"  is obtained by superposition of the 
respective graphs. 

I f  the model is inadequate,  several decisions can be 
made: if many discontinuities are encountered,  either 
reduce the domain or split it in several parts; if values 
appear to be very abnormal,  reconsider the problem, gain 
knowledge on the phenomenon and possibly try an 
"explicat ive" model,  perhaps nonlinear. Otherwise, move to 
the cubic lattice design: Proceed similarly for cubic and 
eventually for quartic. Check points for the cubic model 
will be chosen roughly half among design points of the 

B.9 ~2% water 
~4% urea 

• 23.7 

Urea 

previous model,  half among these of the quartic model. 
This recommendat ion has an obvious interpretat ion in 
terms of economy in experimentat ion.  As for the check 
points of the quartic model,  try all cubic points that do not  
belong to the quartic design, together with some inner 
points of interest. The examples presented in the figures 
very closely illustrate this procedure. 

Several statisticians have also provided designs for 
mul t icomponent  systems, and we have included a fairly 
complete bibliography on this subject (5-16). Roughly all 
designs can be split into two families: one relies on Box and 
Draper principles (6), whereas the other one follows 
Scheff6's ideas. When one is worried about  having too many 
inner points in the design we suggest that  Box and Draper 
be used. However we believe that methods similar to those 
of Scheff6's are preferable in most cases, above all because 
of convenience, ease of  computat ion,  and graphical repre- 
sentation. 

R ESU LTS 
As mentioned before, we first considered the LDLD 

based on the A system of active ingredients. This allowed us 
to display the step by step progression for reaching the 
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simplex model that fits the solubilization system, with 
respect to both viscosity and clear point.  Then we used the 
formula based on the B system of active ingredients for 
numerical support of the pseudovertex technique. For both 
systems of active ingredients, designs were aimed at better 
control of the solubilization system compositions in terms 
of viscosity and clear point  values. There were several 
marketing requests asking for a clear point either under 5 C 
or axound I0 C, with a medium viscosity of 180-200 cps in 
all cases. 

Definit ion of the Domain 

Nine pilot experiments were run with points belonging 
to a simplex centroid design. There were four components:  
water, alcohol, urea and SXS, the sum of which corre- 
sponded to 12% of the whole formula. The fixed part of 
the alcohol content  was set at 4% of the whole formula. 
Out of the nine experiments, four consisted of pure 
components, four of mixtures of three components in equal 
proportions, the last one being the grand centroid, i.e., the 
point including all four components in equal proportions. 
These points were spread well from a geometrical point  of 
view. The fact that we chose pilot experiments within a 
simplex design suggests that we were confident about the 

target domain. In fact results proved that reality was 
different; more precisely, all nine clear point values were 
above 10 C, which left little hope for finding mixtures at 5 
C. 

Our feeling was that lowering the total amount of 
solubilizers was a possible improvement. Some trials, this 
time out of any design, indicated that this was correct, so 
we repeated the nine pilot experiments but with the sum of 
the solubilizer proportions kept at 6% rather than 12% and 
with only 2% of fixed alcohol. Out of the nine points, seven 
had a clear point between 5 C and 12 C and a viscosity 
between 80 cps and 500 cps: the domain appeared to be 
well centered, with no extreme values at the vertices. 

Simple Model 
For this purpose we ran the six remaining points of the 

centroid design. Polynomial equations for rj~sponse were 
obtained, and three check points showed the poorness of 
the fit. 

Cubic Model 
The sum of the proportions of the solubilizers was kept 

at 6% with, again, 2% of fixed alcohol. Since vertices and 
centers of faces are common to centroid and cubic designs, 



OCTOBER, 1972 NARCY AND RENAUD: SIMPLEX EXPERIMENTAL DESIGNS 

Water 

R 36 .5  

607 

4.5%water ~ ~ . ~ " ". ." t4.5%water 
1.5% alcohol, 141 ~ . ~ ~ 3 . 5  1.5% urea 

3% water 
3% alcohol~ 12"(" 

~3% w a t e r  
5.9 /3 % u r e a  

1.5% water ~ 11., 
4.5% a l c o h o l  

|5.8 11.5% w a t e r  
~4.5% u r e a  

11.5 • " ' ~ ~ " . . . .  

Alcohol 8 .5  

6% 4 .5% alcohol 
1.5% u r e a  

2.5  
3% alcohol 
3% urea 

FIG. 11. Clea~ point, quartic model. 

r . ~ ' 23.7 

7 .8  Urea 

1.5% alcohol 6% 
4.5% u r e a  

out of the 20 points of the cubic simplex, 8 were known, 
and only 12 had to be run. Results are shown in Table II. 

A rapid examination of  data showed that  mixtures with 
SXS always give higher clear points than corresponding 
mixtures with urea. Therefore check points were preferably 
chosen among ternary mixtures with water, alcohol and 
urea. We used 16 check points,  seven belonging to the 
previous des ign-grand centroid and midpoints  of the edges, 
and nine belonging to the quartic model,  all taken on the 
water-alcohol-urea face. 

For  viscosity only 5 points out  of 16 fit reality at the 
95% level of confidence. For  clear point only two points 
fit, which reflects the expected greater complexi ty  of the 
clear point  response. Obviously we must turn to  a more 
complex model. 

Q u a r t i c  M o d e l  

We had n o w  accumula ted enough data t o  be able to  
think that we could match all marketing requests by only 
considering water, alcohol and urea. We immediately 
remarked that all of the 15 quartic points  had already been 
run, whether as points of previous designs or check points. 

Grouped results, together with polynomial  responses, are 
presented in Table III. Eleven check points were chosen: 
seven, labeled from a to g, belonged to the cubic design, 
including the grand centroid; and four, labeled from h to k, 

represented inner points of interest. 

Viscosity 
Throughout this s tudy viscosity measurements at the 

design points  have not  been replicated, because previous 
experimental work has displayed a fairly stable error. 
Numerical results for check points are given in Table IV in 
which Id[ represents I Y- YI. 

In order to apply Behrens formula, as described above, 
five replications were done at the grand centroid and o2 = 
64.38, with four degrees of freedom. The remaining 
parameters are: r = 4, k = 1 , [  = 4, g = 14 and 0 ~  75 °. 

Only for points c and f ,  observed and computed values 
contradict  at the 95% level of  confidence. For  all other  
points fit  is very good; consequently the quartic latt ice 
model can be used as the surface response for viscosity. 

Clear  P o i n t  

For all clear point  measurements in this paper, two 
replications were done, because they are more subject to 
interpretat ion by experimenters. Again Behrens test was 
used, but  here i t  reduced to the usual Student 's  t test. 

First,  causes for error for check points and design points 
were similar, since the former were well spread belonging to  
other designs. Second, and as a consequence of the first 
reason, the numbers of  degrees of  freedom are high. Results 
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FIG. 12. Restricted simplex. 

are shown in Table IV. Five out of eleven points present 
significant differences, but, as seen on Figure 7, the most 
interesting part of the domain is well fitted. This area, 
shaded on the figure, corresponds to an intermediate level 
of urea, and clear point variation is continuous inside it; in 
this region the quartic lattice model can be used as the 
surface response for clear point. It is interesting to note 
that, for extreme levels of urea, the profile of variations 
explains the poorer fit by a quartic equation. This is 
understandable technically: when we increase urea concen- 
tration from zero, the influence on clear point is first fairly 
stable; then clear point is lowered, and, finally for high urea 
levels, clear point goes up very quickly. 

Graphic Representation 
As stated above, Scheff6 designs allow graphic represen- 

tation for ternary mixtures. As examples we give four 
graphs: in Figures 8 and 9 viscosity and clear point are 
represented for the cubic model, and in Figures 10 and 11 
for the quartic one. 

Using the two graphs corresponding to the best design 
- quartic, we could define the respective domains that met 
the required objectives. For instance, in Figure 11, the 
shaded area consists of mixtures with clear point below 5 C. 
To see if viscosity and clear point objectives are compatible, 
we only have to superpose the two corresponding diagrams. 

Illustration of a Restricted Design 

For this purpose we worked on the formula based on the 
B system, using the same solubilizers as before: alcohol and 
urea. By changing only the active ingredients system, we do 
not modify the degree of complexity of the solubilization 
properties. Therefore, taking benefit of the previous series 
of experiments, we directly adjusted a quartic model. 
Results are presented in Table V. 

Fit was very good for clear point. As for viscosity, a first 
trial of adjusting the corresponding quartic equation proved 
poor: we even obtained some negative values for predicted 
viscosities! This was due to the pure urea point,  the 
viscosity of which is 7600 cps; that is, we had encountered 
an extreme value. The period of that experimentation was 
prior to our implementation of the pseudovertex tech- 
nique: indeed we should have checked for extreme values 
before determination of the equations. 

Two attempts were necessary to get the proper pseudo- 
vertex. With h = 0.88 viscosity was still too high, 4600 cps, 
but with h = 0.82, it goes down to 1440 cps, and this point 
was retained as the pseudovertex point. 

In Figure 12 we can see that among the 15 points of the 
restricted design, the five points of the water-alcohol edge 
did not  have to be rerun. For the nine new points, graphical 
interpolation was performed in the ternary diagram of the 
complete design. Four check points, labeled from p to s, 
assessed the validity of the transformed quartic. Results are 
presented in Tables VI and VII. 

It is this series of experiments that first permitted us to 
develop the strategy of searching the best simplex design. 
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